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Abstract

The study of heat transfer in the entrance region of ducts with different cross-sections is important in engineering practice. This paper
considers laminar, hydrodynamically fully developed flow in the thermal entrance regions of rectangular passages, emphasizing heat
transfer aspects. By having a prescribed heating or cooling rate and considering the wall temperature to depend on the axial coordinate
alone, the temperature solution leads to an integral equation. Solution of this equation is found using an inverse technique to determine
the temperature at the walls. For verification purposes, an asymptotic solution is developed which produces results that agree very well
with those from the inverse analysis. The results include a correlation and computed values of the Nusselt number at entrance locations,
for rectangular ducts with different aspect ratios.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Convection; Heat transfer; Thermal entrance; Rectangular ducts; Inverse analysis
1. Introduction

Studies of heat transfer to flow in ducts with different
cross-section profiles are reported in the past and they
are currently available in the literature. A survey of earlier
work describing heat transfer in various-shaped ducts is in
Shah and London [1] and Kays and Perkin [2]. Summa-
rized information on the heat transfer within these pas-
sages, available in [3–5], is an indicative of their practical
values. In particular, the heat transfer to flow through rect-
angular passages is of interest in heat exchanger applica-
tions, electronic cooling, and others.

The method of determination of temperature field in
rectangular channels, with classical boundary conditions,
is well documented in the literature. Three types of bound-
ary conditions are classified [1]. The locally constant wall
temperature case, known as the T boundary condition,
has direct solutions. The locally constant wall heat flux at
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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the boundaries, classified as H2 boundary condition, also
has direct solutions for different rectangular ducts. Another
model, called H1 boundary condition [1], has the heat flux
per unit length being uniform while the wall temperature
remains a function of the axial coordinate, uniform along
the perimeter of the ducts [2,3]. This latter case does not
have a direct solution in the thermally developing region;
therefore, the inverse methodology becomes a useful tool
to study the heat transfer phenomena in ducts with various
cross-section profiles.

The objective of this study is the determination of the
wall temperature of a duct when there is a uniform energy
input in the axial direction. Although rectangular ducts
are selected to illustrate the temperature solution methodol-
ogy, similar analyses apply to other passages. When the wall
temperature depends on the axial coordinate alone, it needs
to be estimated numerically using an inverse methodology.
A solution begins by finding the velocity field from the solu-
tion of the momentum equation. Next, the energy equation
should be utilized in order to find the temperature distribu-
tion. During these formulations, the flow is considered to be
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Nomenclature

a, b dimensions of rectangle, see Fig. 1
aij elements of matrix A
A cross-section area, a � b

As surface area
A matrix of coefficients
�b b/a
cp specific heat, J/kg K
cj constants, members of C

C dimensionless velocity coefficient
C vector of coefficients cj

dmj coefficient in matrix D

Dh hydraulic diameter, 4ab/(a + b), m
D matrix with coefficients dmj

e coefficient, Eq. (37b)
h heat transfer coefficient, W/m2 K
j index
fj basis functions in weighted residual method
k thermal conductivity, W/m K
m, n indices
NuD hDh/k
p pressure, Pa
Pe Peclet number, Ua/a
Pr Prandtl number, lcp/k
qw wall heat flux, W/m2

Qw total heat flux, W
Ti initial temperature, K
Tm mean or bulk temperature, K
Tw wall temperature, K
u velocity, m/s

U average velocity, m/s
�u; U dimensionless velocities, see Eqs. (2) and (7)
V volume, m3

x̂ axial coordinate, m
x+ 2ðx̂=DhÞ=ðPrReDÞ
x ðx̂=aÞ=Pe
y, z ŷ=a and ẑ=a
ŷ; ẑ coordinates, m

Greek symbols
a thermal diffusivity, m2/s
bn eigenvalues
cm eigenvalue
d a constant
C a product of two function, Eq. (25)
h temperature function, see Eq. (12)
h* temperature function h � hw

l viscosity coefficient, N s/m2

/j basis functions for hw

Um special function, see Eq. (27c)
Wm special function, see Eq. (27c)
xi elements of vector X
X vector of known values xi

Subscripts

Calc calculated value
FD fully developed condition
m average value or index
w wall condition

a-a

b

-b

0
0

ŷ

ẑ

)ˆ(xTT w=

)ˆ(xTT w=

)ˆ(xTT w=

)ˆ(xTT w=
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unidirectional and hydrodynamically fully developed.
Under these conditions, the velocity field in rectangular
ducts has an exact series solution; two different solutions
are presented in Section 2. Also, Section 3.1 describes an
exact series solution for the fully developed temperature
field in these passages when the wall temperature and the
mean (or bulk) temperature change linearly with the axial
coordinate x̂. However, the computation of temperature
in the thermally developing region requires a numerical pro-
cedure. This numerical study of the temperature field
includes two different methods of analyses. The first one
in Section 3.2 considers temperature penetration away from
the wall to be small and this leads to an asymptotic analyt-
ical solution. The second solution requires a numerical
inverse procedure for the estimation of the unknown wall
temperature; details are in Section 3.3. The numerical
results from this study are included in Section 4.
Fig. 1. Schematic of rectangular cross-section with imposed boundary
conditions.
2. Velocity field in a rectangular duct

For hydrodynamically fully developed laminar flow
passing through a rectangular duct, depicted in Fig. 1,
the momentum equation in its reduced form is
l
o

2u
oŷ2
þ o

2u
oẑ2

� �
� op

ox̂
¼ 0 ð1Þ
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where l is the fluid viscosity. If the flow is hydrodynamically
fully developed, the pressure gradient op=ox̂ is a constant.
Using the duct dimension a, in Fig. 1, as the characteristic
length, the following dimensionless quantities are selected:
y ¼ ŷ=a; z ¼ ẑ=a, and �u ¼ lu=ð�a2op=ox̂Þ. Then, Eq. (1)
becomes

o2�u
oy2
þ o2�u

oz2

� �
þ 1 ¼ 0 ð2Þ

subject to the condition of �u ¼ 0 at the wall. The solution
for Eq. (2) has two different forms and both are used in
the following formulations.

A rapidly converging series solution of Eq. (2) with a
single summation is obtainable by a well-known eigenfunc-
tion expansion approach [6]

�u ¼
X1
n¼1

F nðzÞ cosðbnyÞ ð3Þ

with bn = (n � 1/2)p, and

F nðzÞ ¼
2ð�1Þn�1

b3
n

1� cosh bnz
cosh bn

�b

� �
ð4Þ

After substitution of Fn(z) in Eq. (3) and using a known
identity, it can be written as

�u ¼ 1

2
ð1� y2Þ � 2

X1
n¼1

ð�1Þn�1 cosðbnyÞ
b3

n

e�bnð�b�zÞ þ e�bnð�bþzÞ

1þ e�2bn
�b

ð5Þ

Next, it is common to determine the mean velocity

U ¼ 1

A

Z
A

udA ð6Þ

and obtain the value of U ¼ lU=ð�a2op=ox̂Þ; that is

U ¼ 2
�b

X1
n¼1

bn
�b� tanhðbn

�bÞ
b5

n

¼ 1

3
� 2

�b

X1
n¼1

tanhðbn
�bÞ

b5
n

ð7Þ

Then, the final form of the normalized velocity is

u
U
¼ �u

U
¼
P1

n¼1F nðzÞ cosðbnyÞ
1
3
� 2

�b

P1
n¼1

tanhðbn
�bÞ

b5
n

ð8Þ

where �b ¼ b=a. This rapidly converging solution is useful
when computing the velocity gradient at the walls and it
is used for finding the temperature solution at very small
x values.

Alternatively, one can obtain a direct solution of the
classical Poisson equation, Eq. (2), by considering the
velocity field to be

�u ¼
X1
n¼1

X1
m¼1

amn cosðbnyÞ cosðcmzÞ ð9Þ

where bn ¼ ðn� 1=2Þp; cm ¼ ðm� 1=2Þp=�b and amn is the
unknown Fourier coefficient. The substitution of �u in Eq.
(2) and after the application of the orthogonality condition
amn becomes

amn ¼
4ð�1Þmþn

�bbncmðb2
n þ c2

mÞ
ð10Þ

with the average velocity as given by Eq. (7). This form of
the velocity field becomes useful when computing the heat
transfer coefficient in the thermally fully developed region.

3. Energy equation and temperature solution

The following formulations are for laminar flow with
fully developed velocity field passing through a rectangular
duct heated at a constant rate in the axial direction. For H1
boundary condition, the wall temperature T wðx̂Þ remains a
function of the axial coordinate x̂, independent of ŷ and ẑ.
For the determination of temperature, axial heat conduc-
tion is neglected. Therefore, the energy equation for a suf-
ficiently large Peclet number is

o2T
oŷ2
þ o2T

oẑ2
¼ 1

a
uðŷ; ẑÞ oT

ox̂
ð11Þ

subject to the specified set of boundary conditions. At the
thermal entrance region, the inlet temperature is Ti = con-
stant. When x̂ P 0, the average wall heat flux is qw = dQw/
dAs where dAs ¼ 4ðaþ bÞdx̂ is the surface area element. In
the subsequent formulations, two different dimensionless
temperatures are used; the first one is

h ¼ T ðŷ; ẑ; x̂Þ � T i

ðqwa=kÞ ð12Þ

where a is the characteristic length, as shown is Fig. 1, and
k is the fluid thermal conductivity. When h is defined by
Eq. (12) but with dimensionless coordinates x ¼ ax̂=ðUa2Þ,
y ¼ ŷ=a and z ¼ ẑ=a, Eq. (11) would take the following
form:

o
2h

oy2
þ o

2h
oz2
¼ u

U

� � oh
ox

ð13Þ

Accordingly, the entrance condition becomes hðy; z; 0Þ ¼ 0
while the wall condition is h = hw(x). For the case of pre-
scribed heat flux, the mean or bulk temperature is known
a priori by applying energy balance to a material element;
that is qUabcpdT m ¼ qwðaþ bÞdx̂. Also, by definition, the
mean or bulk temperature in the dimensionless space
hm(x) is

hmðxÞ ¼
1

1� �b

Z 1

0

Z �b

0

u
U

� �
hðy; z; xÞdzdy ð14Þ

Accordingly when qw = constant, the left side of this equa-
tion varies linearly with x. Since hðy; z; xÞ within the integral
is the unknown, an inverse methodology is a suitable
scheme for its determination. However, prior to determina-
tion temperature within the thermal entrance region, it is
appropriate to obtain the temperature solution, hðy; z;1Þ,
under fully developed thermal condition.
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3.1. Fully developed thermal solution

This special solution considers uniform energy input per
unit length of a passage while maintaining a wall tempera-
ture T wðx̂Þ that depends only on the axial coordinate x̂. This
case is expected when the walls of a passage are orthotropic
with a relatively high thermal conductivity in the directions
perpendicular to x-axis. Under fully developed thermal
condition, the temperature profiles become similar. Fur-
thermore, with the average wall heat flux designated as
qw, the aforementioned conditions require that oT=ox̂ ¼
oT b=ox̂ ¼ qwðaþ bÞ=ðabcpqUÞ. After inserting this value
of oT=ox̂ in Eq. (11) and then replacing T using the relation
T = Tw + h*(qwa/k), in dimensionless space, it becomes

o2h�

oy2
þ o2h�

oz2

� �
¼ 4a

Dh

u
U

� �
¼ 4a

Dh

�u

U

� �
ð15Þ

where Dh = 4A/C = 4ab/(a + b) is the hydraulic diameter
and h* is the second dimensionless temperature. The solu-
tion of Eq. (15) is obtainable from the relation

h�ðy; zÞ ¼ 1

U

X1
n¼1

X1
m¼1

cmn cosðbnyÞ cosðcmzÞ ð16Þ

where U is defined in Eq. (7). Next, the function h* from
Eq. (16) and the dimensionless velocity �u, from Eqs. (9)
and (10), should be substituted in Eq. (15). Then, the appli-
cation of orthogonality condition yields

cmn ¼ �
4a
Dh

� �
amn

ðb2
n þ c2

mÞ
ð17Þ

Based on the definition of heat transfer coefficient h = qw/
(Tw � Tm) and using the definition, h�m ¼ ðT m � T wÞ=
ðqwa=kÞ, one gets Nua ¼ ha=k ¼ �1=h�m. Then, the substitu-
tion of h* from Eq. (16) in the modified form of Eq. (14)
leads to a rapidly converging series solution

h�m ¼
X1
n¼1

X1
m¼1

amncmn

4U 2
¼ �a

DhðU�bÞ2
X1
n¼1

X1
m¼1

16

b2
nc

2
mðb

2
n þ c2

mÞ
3

ð18Þ
for the bulk temperature. Therefore, the Nusselt number is

ha
k
¼ � 1

h�m
and NuD ¼ �

Dh

a

� �
1

h�m
ð19Þ
3.2. Asymptotic temperature solution at very small x

At an extremely small distance from the location where
heating begin, it is possible to simplify the energy equation
to assume the following reduced forms:

o
2T

oŷ2
¼ 1

a
uðŷ; ẑÞ oT

ox̂
ð20aÞ

near ŷ ¼ �a wall and

o2T
oẑ2
¼ 1

a
uðŷ; ẑÞ oT

ox̂
ð20bÞ
near ẑ ¼ �b wall. Therefore, ẑ serves as a parameter when
solving Eq. (20a) and ŷ serve as a parameter in Eq. (20b).
Since the solution for these two equations is similar, the
following solution steps are for Eq. (20a).

When the temperature penetration is in the vicinity of
the wall, the velocity is nearly a linear function of the dis-
tance from the wall, ŷ. Then, the velocity near the wall can
be approximated as

u ffi CyðẑÞðŷ þ aÞ; and CyðẑÞ ¼
ouðŷ; ẑ; x̂Þ

oŷ

����
ŷ¼�a

ð21Þ

For this velocity, Eq. (20a) takes the form

a
o2T
oŷ2
¼ CyðẑÞðŷ þ aÞ oT

ox̂
ð22Þ

with the inlet conditions T ðŷ; ẑ; 0Þ ¼ T i and the boundary
condition

�k
oT
oŷ

����
ŷ¼�a

¼ qw ð23Þ

at the walls.
Using the definition for dimensionless temperature, as

given by Eq. (12), makes Eq. (22) to become

a
o

2h
oŷ2
¼ CyðẑÞðŷ þ aÞ oh

ox̂
ð24Þ

The solution of Eq. (24) is obtainable by utilization of the
Laplace transform technique and accordingly

a
o2�h
oŷ2
¼ CyðẑÞðŷ þ aÞs�h ð25Þ

where �h is the Laplace transform h with respect to x̂. Now,
to change the other variable, let

g ¼ ðŷ þ aÞ CyðẑÞs
a

� �1=3

or ŷ þ a ¼ g
a

Cy ð̂zÞs

� �1=3

ð26Þ

and this makes

o2�h
og2
¼ g�h ð27Þ

with the boundary conditions being the Laplace transform
of Eq. (23)

d�h
dg

����
g¼0

¼ � 1

s4=3

a
CyðẑÞa3

� �1=3

ð28Þ

and the condition at infinity of �h being finite.
Eq. (27) is called the Airy ordinary differential equation

[7, p. 446] and its solutions Ai(g] and Bi(g] are available in
symbolic computer packages; e.g., in Mathematica [8], they
are designated as AiryAi[g] and AiryBi[g]. The general
solution of Eq. (27) is

�hðgÞ ¼ C1AiðgÞ þ C2BiðgÞ ð29Þ
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Since Bi goes to infinity as g goes to infinity, C2 must be
zero. The boundary condition given by Eq. (28) yields
the value of C1; then

�hðgÞ ¼ � 1

s4=3

a
CyðẑÞa3

� �1=3 AiðgÞ
Ai0ð0Þ ð30Þ

The inverse Laplace transform of Eq. (30), when g = 0,
yields the wall temperature

hð�a; ẑ; x̂Þ ¼ � 1

Cð4=3�
ax̂

CyðẑÞa3

� �1=3 Aið0Þ
Ai0ð0Þ

¼ 1:5361
ax̂

CyðẑÞa3

� �1=3

ð31aÞ

Similarly, using the same algebraic steps, the wall temper-
ature along ẑ ¼ �b surface is

hðŷ;�b; x̂Þ ¼ � 1

Cð4=3�
ax̂

CzðŷÞa3

� �1=3 Aið0Þ
Ai0ð0Þ

¼ 1:5361
ax̂

CzðŷÞa3

� �1=3

ð31bÞ

In the determination of Eq. (31a), it is assumed that tem-
perature penetration from the wall in the adjacent fluid,
at any x̂ location, is a function ŷ alone. This condition is
similar to that when applying this procedure to parallel
plate channels where the wall temperature and wall heat
flux depend on x̂ alone. However, the rectangular ducts
with constant axial energy input may have the wall temper-
ature and wall heat flux varying along the perimeter at any
given x̂ location. Two limiting conditions are defined in [1]
to address this situation: The H1 case assumes Tw to de-
pend on x̂ alone while circumferentially average heat flux
at this x̂ location is qw. The H2 case assumes qw to be lo-
cally constant while the circumferentially average tempera-
ture at any x̂ location is T wðx̂Þ. Accordingly, these two
limiting cases would modify the working relations for each
of these two cases. For the H1 case, having a constant
T w ¼ T wðx̂Þ, the average heat flux is

qwðx̂Þ ¼
1

2aþ 2b

Z b

�b
qw;yðẑ; x̂Þdẑþ

Z a

�a
qw;zðŷ; x̂Þdŷ

� �
ð32aÞ

Then, the wall heat flux values within these integrals are
obtainable, using Eqs. (31a,b), as

qw;yðẑÞa=k ¼ ðT w � T iÞ½CyðẑÞa3=ðax̂Þ�1=3
=1:5361;

qw;zðŷÞa=k ¼ ðT w � T iÞ½CzðŷÞa3=ðax̂Þ�1=3
=1:5361;

to be inserted into Eq. (32a) for the H1 case

qwa
k
¼ T w � T i

2aþ 2b
1

1:5361

Z b

�b

CyðẑÞa3

ax̂

� �1=3

dẑ

(

þ
Z a

�a

CzðŷÞa3

ax̂

� �1=3

dŷ

)
ð32bÞ
Furthermore, Eq. (32b) can be rewritten as

qwa
k
¼ T w � T i

2aþ 2b
1

1:5361

a3

ax̂

� �1=3

�
Z b

�b
½CyðẑÞ�1=3dẑþ

Z a

�a
½CzðŷÞ�1=3dŷ

	 

ð32cÞ

The term within the braces has a constant value for a given
aspect ratio b/a. For convenience of formulations, let

C1=3 ¼ 1

aþ b

Z b

0

½aCy ð̂zÞ=U �1=3dẑþ
Z a

0

½aCzðŷÞ=U �1=3dŷ
	 


ð33Þ
and this simplifies the computation of wall temperature for
the H1 case.

Alternatively, for the H2 case, qw ¼ qwðx̂Þ is independent
of ŷ and ẑ while the average wall temperature is

T wðx̂Þ ¼
1

2aþ 2b

Z b

�b
T w;yðẑ; x̂Þdzþ

Z a

�a
T w;zðŷ; x̂Þdŷ

� �
ð34Þ

Then, a similar procedure would provide the following
effective C coefficient by directly averaging Eqs. (31a,b);
that is, for the H2 case the expression is

C�1=3¼ 1

aþb

Z b

0

½aCyðẑÞ=U ��1=3dẑþ
Z a

0

½aCzðŷÞ=U ��1=3dŷ
	 


ð35Þ
For either H1 or H2 case, at very small values of x, the
working relation is

T w � T i

qwa=k
¼ 1:5361

x
C

� �1=3

ð36aÞ

where x ¼ ðx̂=aÞ=Pe and Pe = aU/a. Since at very small x

values, Tm ffi Ti, then using the definition of h = qw/
(Tw � Tm), Eq. (36a) yields the dimensionless heat transfer
coefficient

ha
k
¼ 1:5361

x
C

� �1=3
� ��1

ð36bÞ

For convenience, in subsequent numerical simulation, the
parameter C is computed for both H1 and H2 cases at dif-
ferent b/a values and the results are in Table 1. They show
that both C values are relatively large when b/a = 1, they
reduce monotonically, pass through minimums, and then
they asymptotically approach 3 for parallel plate channels.
This can also be demonstrated by examining the plotted
values in Fig. 2. It is interesting to note that h(2a)/k, for
the H1 case under the fully developed thermal condition,
Eq. (19), has a similar behavior as can be seen from data
appearing in Table 1 and plotted in Fig. 2. The quantity
h(2a)/k has a minimum of 3.0923 when b/a = 1.97 while
the minimum of C (for H1) is located near b/a = 3 and
the minimum of C (for H2) is located near b/a = 2.5 where
C = 2.389; however, the Nusselt number values as given in
[9], for the H2 case, behaves differently.



Table 1
Effective values of parameter C and NuD,FD for rectangular ducts

b/a C (for H1)
Eq. (33)

C (for H2)
Eq. (35)

[h(2a)/k]FD

Eq. (19)
NuD,FD Eq.
(19)

1 3.325 2.906 3.608 3.608
1.2 3.069 2.684 3.342 3.646
1.5 2.866 2.511 3.159 3.790
2 2.731 2.406 3.092 4.123
3 2.689 2.404 3.197 4.795
4 2.711 2.457 3.332 5.331
5 2.739 2.512 3.443 5.738
6 2.766 2.560 3.529 6.049
7 2.788 2.600 3.597 6.294
8 2.807 2.635 3.651 6.490
9 2.823 2.664 3.695 6.651

10 2.837 2.689 3.732 6.785
15 2.883 2.775 3.849 7.217
20 2.909 2.824 3.912 7.451
1 3.000 3.000 4.118 8.235

10 0 1012 3 4 5 6 7 8 9 2 3

b / a

2.5

3.0

3.5

4.0

h 
(2

a)
 / 

k
or

 C

h (2a) / k

C (for H2)

C (for H1)

Fig. 2. The variation of thermally fully developed heat transfer coefficient
for H1 case and the effective dimensionless velocity slope C for H1 case,
Eq. (33), and H2 case, Eq. (55), versus b/a, for flow in rectangular ducts.
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From this point forward, the emphasis of this work is
devoted mainly to the H1 case. It was noted that the C

parameter for H1 is the same as that for the locally con-
stant wall temperature case in [10]. For that case, the inclu-
sion of an additional term improved the accuracy of Eq.
(36b) at relatively larger distance from the entrance loca-
tion [10]; that is,

ha
k
¼ 0:651ðCÞ1=3

ðxÞ1=3½1þ eðxÞ1=3�
ð37aÞ

and the estimated value of e, as given in [10], is

e ¼ 0:151þ 0:58
�b

ð37bÞ

It should be stated that Eq. (37a) was successfully tested for
the H2 case and the Nusselt number results agreed well
with those in [11]. A mid-range comparison indicated the
existence of a larger curvature effect [10] due to higher tem-
perature values at the corners that may require increasing
the parameter e in Eq. (37b).

3.3. Entrance formulation at large x

When the axial distance is not very small, a different
methodology is needed to obtain a relatively accurate solu-
tion to this problem. The alternative Green’s function solu-
tion in [12, Section 10.3] is selected for this study. Using a
modified dimensionless temperature

h�ðy; z; xÞ ¼ hðy; z; xÞ � hwðxÞ ð38Þ
and after replacing hðy; z; xÞ in the energy equation, Eq.
(13), it becomes

o
2h�

oy2
þ o

2h�

oz2
� �u

U

dhw

dx
¼ �u

U

oh�

ox
ð39Þ

with the inlet and the boundary conditions h�ðy; z; 0Þ ¼
h�ð�1; z; xÞ ¼ h�ðy;��b; xÞ ¼ 0. The parameter dhw(x)/dx

appearing in this equation serves as a heat sink. Then,
the temperature solution [12, Eq. (10.77)] is

h�ðy; z; xÞ ¼ hðy; z; xÞ � hwðxÞ

¼ �
Z x

n¼0

Z �b

z0¼0

Z 1

y0¼0

�uðy0; z0Þ
U

� �
dhwðnÞ

dn

� �
� Gðy; z; xjy0; z0; nÞdy0 dz0 dn ð40Þ

Next, using the corresponding mean temperature

h�mðxÞ ¼
1

�b� 1

Z �b

z¼0

Z 1

y¼0

�uðy; zÞ
U

� �
h�ðy; z; xÞdy dz ð41Þ

leads to the relation

hmðxÞ�hwðxÞ

¼�1
�b

Z �b

z¼0

Z 1

y¼0

Z x

n¼0

Z �b

z0¼0

Z 1

y0¼0

�uðy 0;z0Þ
U

� �

� dhwðnÞ
dn

� �
�uðy;zÞ

U

� �
Gðy;z;xjy0;z0;nÞdy0dz0dndydz

ð42Þ

As shown in Eq. (42), the Green’s function is integrated
over y, y0, z, and z0 to get the function

Cðx� nÞ ¼ 1

ð�bÞ2
Z �b

z¼0

Z 1

y¼0

Z �b

z0¼0

Z 1

y0¼0

�uðy0; z0Þ
U

� �
�uðy; zÞ

U

� �

� Gðy; z; xjy 0; z0; nÞdy0 dz0 dy dz ð43Þ

This selection simplifies the form of Eq. (42) and it becomes

hmðxÞ � hwðxÞ ¼ �ð�b� 1Þ
Z x

n¼0

dhwðnÞ
dn

� �
Cðx� nÞdn ð44Þ

It is sometimes analytically possible to determine hw(x)
from Eq. (26) by using the Laplace transform method,
since the right side is the convolution integral. For special
cases depending on the functional form of C(x); e.g., for
slug flow in passages, the solutions become the same as
those for thermal conduction in solids as discussed in
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[13]. Also, it is possible to get a numerical solution with an
inverse procedure that uses the function specification
method.

The Green’s function used in this formulation, as given
in [12,14, Eq. (10.55)], is

Gðy; z; xjy0; z0; nÞ ¼
XN

m¼1

Umðy 0; z0ÞWmðy; zÞe�k2
mðx�nÞ ð45aÞ

wherein

Wmðy; zÞ ¼
XN

j¼1

dmjfjðy; zÞ ð45bÞ

and

Umðy 0; z0Þ ¼
XN

j¼1

pmifjðy0; z0Þ ð45cÞ

The basis functions fjðy; zÞ in Eqs. (45b–c) are members of
a complete set, each satisfying the boundary condition of
the first kind; therefore, the relation

fj ¼ ð1� �y2Þð�b2 � �z2Þ�y2ðmj�1Þ�z2ðnj�1Þ;

for j ¼ 1; 2; . . . ;N ð46Þ

for all combinations of mj and nj represents a suitable set of
basis functions. This would make the exponents mj and nj

for j ¼ 1; 2; 3; 4; 5; 6; . . . to become ðm1; n1Þ ¼ ð1; 1Þ; ðm2;
n2Þ ¼ ð2; 1Þ; ðm3; n3Þ ¼ ð1; 2Þ; ðm4; n4Þ ¼ ð3; 1Þ; ðm5; n5Þ ¼
ð2; 2Þ; ðm6; n6Þ ¼ ð1; 3Þ; . . . Therefore, for a complete set, N

depends on the range of mj and nj. After selection of fj(y,z),
the members of matrices A and B are

aij ¼ �
Z �b

�z¼0

Z 1

�y¼0

rfið�y;�zÞ � rfjðy; zÞdy dz ð47aÞ

and

bij ¼
Z �b

�z¼0

Z 1

�y¼0

�u

U

� �
fiðy; zÞfjðy; zÞdy dz ð47bÞ

Once the matrices A and B are known, the relation

ðAþ k2
mBÞ � dm ¼ 0 ð48Þ

provides the eigenvalues k2
m, and coefficients djm. The eigen-

vectors dm contains djm, for all j values, and it will consti-
tute the rows of a matrix D for insertion in equation

P ¼ ½ðD � BÞT��1 ð49Þ

that is the product of matrices D and B transposed and
then inverted. The computed matrix P has the members
pmj for inclusion in Eq. (45c).
3.3.1. The function specification method

When x is relatively large, a solution is obtainable using
a parameter estimation procedure that uses a reduced form
of Eq. (43)
Cðx� nÞ ¼
XN

m¼1

1
�b

Z �b

z0¼0

Z 1

y0¼0

�uðy0; z0Þ
U

� �
Umðy 0; z0Þdy 0 dz0

" #

� 1
�b

Z ~b

z0¼0

Z 1

y0¼0

�uðy; zÞ
U

� �
Wmðy; zÞdy dz

" #
e�k2

mðx�nÞ

ð50Þ

and, in a shorthand form, Eq. (50) is rewritten as

Cðx� nÞ ¼
XN

m¼1

UmWme�k2
mðx�nÞ ð51Þ

wherein these averaged quantities are

Um ¼
1
�b

Z �b

z0¼0

Z 1

y0¼0

�uðy0; z0Þ
U

� �
Umðy 0; z0Þdy 0 dz0 ð52aÞ

and

Wm ¼
1
�b

Z �b

z0¼0

Z 1

y0¼0

�uðy; zÞ
U

� �
Wmðy; zÞdy dz ð52bÞ

Eq. (44) after substitution of C(x � n) reduces to

hmðxÞ � hwðxÞ

¼ ��b
XN

m¼1

Z x

n¼0

dhwðxÞ
dx

� �
UmWm exp½�k2

mðx� nÞ�dn ð53Þ

for inverse estimation of hw(x). The function specifications
method in Beck et al. [15,16] is a suitable technique.

In accordance with the function specifications method
[15,16], the physics of this problem suggests using the wall
temperature hw to have the following form:

hwðxÞ ¼ dþ 1þ �b
�b

xþ
XM

j¼1

cj/jðxÞ: ð54Þ

Following the appropriate substitution of hw(x) in Eq. (54),
the result is

hmðxÞ � dþ 1þ �b
�b

xþ
XM

j¼1

cj/jðxÞ
 !

¼ ��b
XN

m¼1

UmWm

Z x

n¼0

exp½�k2
mðx� nÞ�

� 1þ �b
�b
þ
XM

j¼1

cj
d/jðxÞ

dx

 !
dn ð55Þ

The parameter d in Eqs. (54) and (55) represents the quan-
tity hw(x) � hm(x) as x becomes very large, while
hmðxÞ ¼ ð1þ �bÞx=�b. As shown by Eq. (18), d ¼ �h�m and,
therefore, it can be determined using the fully developed
solution of the temperature field. Then, Eq. (54) suggests
that all /j(x) functions should vanish as x becomes large
and this condition makes /j(x) functions to be viewed as
exponentially decaying functions. The next step is to com-
pute the constants cj using an appropriate inverse estima-
tion methodology.



Table 2
A comparison of the exact Nusselt number NuD,FD = hDh/k computed by
utilizing Eq. (18), and the one from Eq. (64)

b/a Exact N = 21 N = 36 N = 55

1 3.60795 3.60793 3.60795 3.60795
2 4.12330 4.12327 4.12330 4.12330
3 4.79479 4.79474 4.79479 4.79479
4 5.33107 5.33097 5.33105 5.33107
5 5.73769 5.73753 5.73767 5.73769
7 6.29405 6.29371 6.29401 6.29404

10 6.78497 6.78437 6.78486 6.78495
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Since hmðxÞ ¼ ð1þ �bÞx=�b, the left side of Eq. (55) is

hmðxÞ � hwðxÞ ¼ �d�
XM

j¼1

cj/jðxÞ ð56Þ

and then it reduces to

� �b
XN

m¼1

UmWm

Z x

n¼0

1þ �b
�b
þ
XM

j¼1

cj
d/jðnÞ

dn

" #

� exp½�k2
mðx� nÞ�dn ¼ �d�

XM

j¼1

cj/jðxÞ ð57Þ

By rearranging the terms, Eq. (57) assumes a suitable form
for the evaluation of cj coefficients, that is,

XM

j¼1

cj /jðxÞ��b
XN

m¼1

UmWm

Z x

n¼0

d/jðnÞ
dn

� �
exp½�k2

mðx�nÞ�dn

( )

¼�dþ�b
1þ�b

�b

� �XN

m¼1

UmWm
1� exp½�k2

mx�
k2

m

¼��b
1þ�b

�b

� �XN

m¼1

UmWm
exp½�k2

mx�
k2

m

ð58Þ

It is to be noted that the left side of Eq. (58) vanishes as
x ?1 since /j(x) in Eq. (56) decays exponentially as
x ?1. This implies that the right side must also become
equal to zero as x ?1. Therefore, the sum of all constants
(including d) on the right side of Eq. (58) is equal to zero
and they are discarded.

As stated earlier, the inverse procedure begins by select-
ing a set of suitable /j(x) functions. As suggested by Eq.
(56), the quantity within the summation has a finite value
of �d at x = 0 and goes zero as x becomes infinite. The
arbitrarily selected /j(x) functions have the form
/j(x) = exp(�j2p2x) that performed well at large values of
x. The small-x solution, Eq. (36a), shows that dhw (x)/
dx ?1 as x ? 0. Accordingly, this set of functions is aug-
mented by another function that behaves as dictated by Eq.
(36a) when x goes toward zero and vanishes as x goes to
infinity. The selected functions are

/1 ¼ e�p
ffiffi
x3p ð59aÞ

/j ¼ e�ðj�1Þ2ðp2xÞ for j ¼ 2; 3; . . . ð59bÞ

wherein the function /1 has a proper slope of +1 when
x ? 0 if the corresponding computed coefficient c1 in Eq.
(56) has a negative value.

The next task is the determination of the coefficients, cj,
for j ¼ 1; 2; . . . ;M , on the left side of Eq. (58). The proce-
dure is to evaluate the terms in Eq. (58) at Np different val-
ues of x = xi within a specified range. The coefficients on
the left side of Eq. (58) will constitute the elements of a
new matrix A and they are

aij ¼ /jðxiÞ � �b
Z xi

n¼0

d/jðnÞ
dn

� �XN

m¼1

UmWm exp½�k2
mðxi � nÞ�dn

ð60Þ
for i ¼ 1; 2; . . . ;Np, and j ¼ 1; . . . ;M . Also, the computed
parameter on the right side of Eq. (58)

xi ¼ ��b
1þ �b

�b

� �XN

m¼1

UmWm
exp½�k2

mðxiÞ�
k2

m

ð61Þ

are the members of vector X. Finally, the results are sum-
marized in the matrix form as

½A�fCg ¼ fXg ð62Þ

This equation stands for Eq. (58) for the determination of
coefficients c1; c2; c3; . . . ; cM , the members of vector C.
When the number of points Np > M, a standard least
squares procedure yields the solution

fCg ¼ ½ATA��1fATXg ð63Þ

Once the vector C is known, the wall temperature is avail-
able from Eq. (54) and the local temperature from Eq. (40).

4. Results and discussion

Before using this formulation to calculate temperature
values, it is necessary to show that this Green’s function
solution can provide sufficiently accurate results. To test
its accuracy, the fully developed solution was used to deter-
mine h�m from the exact series solution in Eq. (18) and then
the Nusselt number from Eq. (19). Alternatively, the corre-
sponding solution of h�m by the extended weighted residual
is

ðh�mÞFD ¼ �ð1þ �bÞ
XN

m¼1

UmWm

k2
m

ð64Þ

that would yield the Nusselt number using Eq. (19). Table 2
compares the computed Nusselt numbers obtained by these
two methods. The data in column 2 are from Eqs. (18) and
(19) and those in columns 3, 4, and 5 are for N ¼ 21; 36; and
55 terms using Eqs. (64) and (19). For sufficient accuracy,
N = 55 is used when b/a = 10, and for the remaining aspect
ratios N = 36 is the selection, in the subsequent analysis.

The evaluation of the accuracy of this inverse procedure
is an interesting issue. Following the computation of hw by
this inverse procedure, it is inserted in Eq. (42) to determine
the mean or bulk temperature. Since the exact value of
mean temperature hm ¼ ð1þ �bÞx=�b is readily known, the
percent error
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e ¼ ðhmÞCalc: � ð1þ �bÞx=�b
ð1þ �bÞx=�b

� 100 ð65Þ

is an indicative of the numerical accuracy. This is an in-
stance of intrinsic verification [17]. Fig. 3 shows the com-
puted percent error in hm for four sets of results in four
regions along x-axis. Each set of values was computed
using 	500 unequally-spaced locations within a range of
the dimensionless axial coordinate. Two essential sets are
selected so that 0.0001 6 x 6 0.06 for the first set and
0.0001 6 x 6 0.3 for the second set. The higher values of
x were emphasized in two additional sets. Fig. 3 shows a
summary of the results for different b/a values. As can be
seen from Fig. 3a and b, the error in less than 0.1%, except
when x < 0.005. Fig. 4a is a representative sample of data
that illustrates the reason for having multiregions. For
b/a = 2, Fig. 4a shows small error at lower values of x

for the first solution when 0.0001 6 x 6 0.06. The second
solution also begins at x = 0.0001 but the range of x is
extended to x = 0.3. The data plotted in this figure show
that the error increases at the lower values of x but eventu-
ally reduces to below 0.1% for x > 0.06, where it is needed.
Fig. 4b is prepared to demonstrate the effect of this larger
error on the computed hw. Although, Fig. 4a shows that
the errors in second solution, at small x values, are much
larger, the data in Fig. 4b show only small differences in
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Fig. 3. Estimated percent error e, Eq. (65), for b=a ¼ 1; 2; 3; 4; 5; 7,
and 10.

Fig. 4. A sample comparison of the first and the second solutions for
b/a = 2 emphasizing different ranges of the axial coordinate x: (a)
the percent error e, Eq. (65), and (b) the wall temperature hw, Eq. (54).
the hw values. A sample of the computed large-x Nusselt
number, NuD, data is presented in Table 3. At larger values
of x, the error is mainly the truncation error. Also, at smal-
ler values of x, above 10�3, the error remains relatively
small and gradually increases as x decreases.

It is appropriate to view a comparison between the
small-x and large-x solutions. Fig. 5a shows that the solid
lines (large x) perform properly when x P 0.001 as they
approach the dash lines (small x). Also, the dash lines
properly assume similar values in the neighborhood of
x = 0.001, an indicative of their accuracy as x ? 0. For
comparison, the Nusselt number values from Kays and
Crawford [3] are also plotted in Fig. 5a. There are detect-
able differences between these computed data and those
from [3]. Table 4 shows the relative values of the results
from this study and those from [3, Tables 9 and 10]. In this
table, the dimensionless axial coordinate is selected to be
xþ ¼ 2ðx̂=DhÞ=ðPrReDÞ as used in [3]; therefore, x+ =
x(Dh/a)2/2 for the data in Table 2. Except at few isolated
locations the differences in the tabulated values are rela-
tively small.

The small-x solution, Eq. (36b), and data plotted in
Fig. 2 hint toward the feasibility of having a unique corre-
lation that would provide an acceptable simple relation for
the Nusselt number within the broad range of 0 < x <1
and 1 6 b/a <1. Accordingly, a correlation is prepared
that can accomplish this task, it is



Table 3
A sample of Nusselt number, NuD, at larger values of x, computed using Eq. (56) in the function specification method

x b/a = 1 b/a = 2 b/a = 3 b/a = 4 b/a = 5 b/a = 7 b/a = 10 b/a =1
0.0007 20.82 26.53 29.70 31.41 32.75 34.89 36.71 42.25
0.001 18.51 23.47 26.44 28.10 29.29 31.10 32.76 37.55
0.002 14.64 18.49 20.98 22.51 23.49 24.82 26.17 29.89
0.003 12.74 16.11 18.26 19.68 20.60 21.74 22.92 26.18
0.004 11.54 14.62 16.55 17.88 18.75 19.81 20.87 23.85
0.005 10.71 13.57 15.35 16.59 17.44 18.45 19.43 22.20
0.007 10.07 12.13 13.73 14.83 15.63 16.59 17.47 19.94
0.01 8.512 10.78 12.23 13.20 13.92 14.83 15.62 17.82
0.02 6.798 8.594 9.789 10.59 11.15 11.93 12.57 14.43
0.03 6.005 7.569 8.634 9.36 9.871 10.56 11.15 12.84
0.04 5.514 6.934 7.920 8.598 9.077 9.715 10.27 11.86
0.05 5.177 6.494 7.425 8.068 8.527 9.130 9.657 11.18
0.07 4.737 5.912 6.772 7.371 7.802 8.369 8.865 10.30
0.1 4.352 5.399 6.196 6.755 7.160 7.697 8.165 9.530
0.2 3.844 4.652 5.376 5.901 6.285 6.803 7.255 8.574
0.3 3.690 4.406 5.106 5.623 6.005 6.522 6.975 8.332
0.4 3.638 4.272 4.969 5.494 5.884 6.414 6.880 8.263
0.5 3.619 4.223 4.914 5.441 5.834 6.368 6.839 8.244
0.7 3.609 4.162 4.848 5.381 5.781 6.327 6.808 8.236
1.0 3.608 4.145 4.825 5.359 5.762 6.312 6.797 8.235
1.2 3.608 4.139 4.817 5.352 5.756 6.307 6.794 8.235
1 3.608 4.123 4.795 5.331 5.738 6.294 6.785 8.235
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Fig. 5. Computed small-x and large-x Nusselt numbers versus x ¼
ðx̂=aÞ=Pe and their comparison with (a) data from [3] and (b) new
correlation, Eq. (66).

Table 4
A numerical comparison between present calculations and those from [3],
within the parentheses

x+ b/a = 1 b/a = 2 b/a = 3 b/a = 4 b/a =1
0 1 1 1 1 1
0.01 6.824 7.057 7.667 8.045 9.9878

(7.10) (7.46) (8.02) (8.44)
0.02 5.544 5.929 6.356 6.719 8.8031

(5.69) (6.05) (6.57) (7.00) (8.80)
0.05 4.352 4.762 5.285 5.670 8.2634

(4.45) (4.84) (5.39) (5.87)
0.10 3.845 4.299 4.943 5.421 8.2355

(3.91) (4.38) (5.00) (5.62) (8.25)
0.20 3.638 4.173 4.839 5.360 8.2355

(3.71) (4.22) (4.85) (5.45)
1 3.608 4.123 4.795 5.331 8.2353

(3.60) (4.11) (4.77) (5.35) (8.235)
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NuD ¼
hDh

k
¼ 0:651ðDh=aÞ
ðx=CÞ1=3 þ ð0:58=�bÞðx=CÞ2=3

þ NuD;FD

1þ 2:48� 0:24
�b2

� 

ðC2xÞ�2=3

h i4=3
for 0 6 x 6 0:8

¼ NuD;FD for 0:8 < x <1
ð66Þ
The second column of Table 1 contains the parameter C

and NuD;FD for insertion in Eq. (66). As an example,
C = 3 and NuD;FD ¼ 8:235 for parallel plate channels and
the percent deviation using Eq. (66) is less than 1%. The
symbols in Fig. 5b are representative values of the Nusselt
numbers, acquired using Eq. (66). The circular symbols
from this new correlation show excellent agreements with
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the small-x solutions and good agreements with the large-x
solutions.

5. Conclusion

The currently available heat transfer information related
to the H1 boundary condition for rectangular ducts are for
a relatively narrow range. Solutions provided herein for
small-x and large-x values should enhance the available
information in the heat transfer literature. These asymp-
totic solutions at very small x values have a broad range
of applications and they can be used for ducts having other
cross-section profiles. Similarly, the inverse methodology
described herein also applies to ducts having other cross-
section profiles. For completeness, a new correlation is pro-
vided that yields the Nusselt number for rectangular ducts
with H1 boundary conditions, when 0 < x <1 and 1 6
b/a <1.
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